Method | Description | |
---|---|---|
__construct ( |
||
getDegreesOfFreedomError ( ) : integer | ||
getDegreesOfFreedomModel ( ) : integer | ||
getDegreesOfFreedomTotal ( ) : integer | ||
getFStatistic ( ) : float | Returns the F statistic, which is compared against the F distribution CDF to determine if the regression is "significant" or not. | |
getRSquared ( ) : float | Calculates the coefficient of determination. i.e. how well the line of best fit describes the data. | |
getStandardError ( ) : float | Calculates the standard error of the regression. This is the average distance of observed values from the regression line. It's conceptually similar to the standard deviation. | |
getStandardErrorCoefficients ( ) : array | Calculates the standard error of each of the regression coefficients. | |
getTStatistics ( ) : array | Calculates the t test values of each of the regression coefficients. |
Method | Description | |
---|---|---|
getFeatureCount ( ) : integer | ||
getMeanSquaredError ( ) : float | Returns the mean-squared error of the regression, which is effectively the "average" of the corresponding sum of squares. | |
getMeanSquaredModel ( ) : float | Returns the mean-squared model of the regression, which is effectively the "average" of the corresponding sum of squares. | |
getObservationCount ( ) : integer | ||
getPredictedOutcomes ( ) : array | ||
getSumSquaredError ( ) : float | Calculates the sum of the squares of the residuals, which are the distances of the observations from their predicted values, a raw measure of the overall error in the regression model. | |
getSumSquaredModel ( ) : float | Calculates the sum-squared error of the regression. This is the sum of the squared distances of predicted values from their average. | |
getSumSquaredTotal ( ) : float | Calculates the sum-squared total of the regression. This is the sum of the squared distances of observations from their average, a useful measure to put the sum-squared error (SSE) and sum-squared model (SSM) into context. | |
sumSquaredDifference ( array $series, float $baseline ) : float |
public __construct ( |
||
$observations | ||
$coefficients | array | |
$predictor | MCordingley\Regression\Predictor\Predictor |
public getDegreesOfFreedomError ( ) : integer | ||
return | integer |
public getDegreesOfFreedomModel ( ) : integer | ||
return | integer |
public getDegreesOfFreedomTotal ( ) : integer | ||
return | integer |
public getFStatistic ( ) : float | ||
return | float |
public getRSquared ( ) : float | ||
return | float |
public getStandardError ( ) : float | ||
return | float |
public getStandardErrorCoefficients ( ) : array | ||
return | array |
public getTStatistics ( ) : array | ||
return | array |